43 research outputs found

    Finite-time regulation property of DNA feedback regulator

    Get PDF
    In dynamic DNA nanotechnology, the DNA strand displacement technique provides the cornerstone for the bottom-up design of a man-made DNA molecular system. Practically, a feedback controller for regulating the concentration of a target DNA strand to the desired level is indispensable for mediating the kinetic momentum of a molecular actuator. However, such a regulator system operates by consuming fuel strands and requires sufficient supplies of these consumables for its normal execution, indicating that, in practice, optimal controller design requires the period of time during which the regulator proceeds with normal operation to be as long as possible. The fact that the system is naturally high dimensional and nonlinear complicates the analysis of properties emerging during a finite-time period in terms of their theoretical aspects. In this paper, we first define the new concept of a “finite-time regulation property” of DNA systems in the regulation problem. Then, to theoretically analyze this regulation property, we present two-time-scale modeling based on the difference in the initial distribution of the abundance of DNA strands. Focusing on the fast mode as a subsystem with a positive quadratic structure, we propose a new method for analyzing the regulation property observed in a finite period of time

    Analysis of finite-time regulation property of biomolecular PI controller

    Get PDF
    In practical applications of dynamic DNA nanotechnology, a biomolecular controller is required for maintaining the operation of the molecular actuator at a desired condition based on the information from molecular sensors. By making use of the DNA strand displacement mechanism as a “programming language” in the controller design, a biomolecular PI controller has been proposed. However, this PI control system has been verified only at the simulation level, and a theoretical regulation analysis is still required. Accordingly, in this study, we perform a rigorous regulation analysis of the biomolecular PI control system. Specifically, we theoretically prove that the output signal approaches the target level at a quasi-steady state. To this end, we apply the concept of finite-time regulation property to the biomolecular PI control system

    XOR Gate Design Toward a Practical Complete Set for DNA Computing

    Get PDF
    Practical design of the XOR gate is an important milestone in the field of DNA computing. In this study, we aim to develop an enzyme-free XOR gate driven by a toehold-mediated strand displacement mechanism possessing the true detection property. The advantages of our design are as follows: dual-rail logic is not required, the explicit use of the NOT gate is avoided, the circuit structure is simple, and the design is achievable with fewer DNA strands than that designed by the combination of four NAND gates. A rational circuit design is performed and the dynamic behaviors of the biochemical reaction and the secondary structures of DNA strands are confirmed by computer simulation. In particular, both the domain-level design technique with G-T mismatched base pairs and base sequence-level fine-tuning are successfully achieved to alleviate the performance degradation arising from unintended and leaky reactions present in the circuit. The validity of the XOR gate design is confirmed by experimental studies

    Renewable DNA Proportional-Integral Controller with Photoresponsive Molecules

    Get PDF
    A molecular robot is an intelligent molecular system. A typical control problem of molecular robots is to maintain the concentration of a specific DNA strand at the desired level, which is typically attained by a molecular feedback control mechanism. A molecular feedback system can be constructed in a bottom-up method by transforming a nonlinear chemical reaction system into a pseudo-linear system. This method enables the implementation of a molecular proportional-integral (PI) controller on a DNA reaction system. However, a DNA reaction system is driven by fuel DNA strand consumption, and without a sufficient amount of fuel strands, the molecular PI controller cannot perform normal operations as a concentration regulator. In this study, we developed a design method for a molecular PI control system to regenerate fuel strands by introducing photoresponsive reaction control. To this end, we employed a photoresponsive molecule, azobenzene, to guide the reaction direction forward or backward using light irradiation. We validated our renewable design of the PI controller by numerical simulations based on the reaction kinetics. We also confirmed the proof-of-principle of our renewable design by conducting experiments using a basic DNA circuit

    Epidermal growth factor receptor mutation in combination with expression of MIG6 alters gefitinib sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidermal growth factor receptor (EGFR) signaling plays an important role in the regulation of cell proliferation, survival, metastasis, and invasion in various tumors. Earlier studies showed that the EGFR is frequently overexpressed in non-small-cell lung cancer (NSCLC) and EGFR mutations at specific amino acid residues in the kinase domain induce altered responsiveness to gefitinib, a small molecule EGFR tyrosine kinase inhibitor. However, the mechanism underlying the drug response modulated by EGFR mutation is still largely unknown. To elucidate drug response in EGFR signal transduction pathway in which complex dynamics of multiple molecules involved, a systematic approach is necessary. In this paper, we performed experimental and computational analyses to clarify the underlying mechanism of EGFR signaling and cell-specific gefitinib responsiveness in three H1299-derived NSCLC cell lines; H1299 wild type (H1299WT), H1299 with an overexpressed wild type EGFR (H1299EGFR-WT), and H1299 with an overexpressed mutant EGFR L858R (H1299L858R; gefitinib sensitive mutant).</p> <p>Results</p> <p>We predicted and experimentally verified that Mig6, which is a known negative regulator of EGFR and specifically expressed in H1299L858R cells, synergized with gefitinib to suppress cellular growth. Computational analyses indicated that this inhibitory effect is amplified at the phosphorylation/dephosphorylation steps of MEK and ERK.</p> <p>Conclusions</p> <p>Thus, we showed that L858R receptor mutation in combination with expression of its negative regulator, Mig6, alters signaling outcomes and results in variable drug sensitivity.</p

    Doubly linked chiral phenanthrene oligomers for homogeneously π-extended helicenes with large effective conjugation length

    Get PDF
    Helically twisted conductive nanocarbon materials are applicable to optoelectronic and electromagnetic molecular devices working on the nanometer scale. Herein, we report the synthesis of per-peri-perbenzo[5]- and [9]helicenes in addition to previously reported π-extended [7]helicene. The homogeneously π-extended helicenes can be regarded as helically fused oligo-phenanthrenes. The HOMO−LUMO gap decreased significantly from 2.14 to 1.15 eV with increasing helical length, suggesting the large effective conjugation length (ECL) of the π-extended helical framework. The large ECL of π-extended helicenes is attributed to the large orbital interactions between the phenanthrene subunits at the 9- and 10-positions, which form a polyene-like electronic structure. Based on the experimental results and DFT calculations, the ultrafast decay dynamics on the sub-picosecond timescale were attributed to the low-lying conical intersection

    Ligand-Specific c-Fos Expression Emerges from the Spatiotemporal Control of ErbB Network Dynamics

    Get PDF
    SummaryActivation of ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) determines distinct cell-fate decisions, although signals propagate through shared pathways. Using mathematical modeling and experimental approaches, we unravel how HRG and EGF generate distinct, all-or-none responses of the phosphorylated transcription factor c-Fos. In the cytosol, EGF induces transient and HRG induces sustained ERK activation. In the nucleus, however, ERK activity and c-fos mRNA expression are transient for both ligands. Knockdown of dual-specificity phosphatases extends HRG-stimulated nuclear ERK activation, but not c-fos mRNA expression, implying the existence of a HRG-induced repressor of c-fos transcription. Further experiments confirmed that this repressor is mainly induced by HRG, but not EGF, and requires new protein synthesis. We show how a spatially distributed, signaling-transcription cascade robustly discriminates between transient and sustained ERK activities at the c-Fos system level. The proposed control mechanisms are general and operate in different cell types, stimulated by various ligands

    Individual hematopoietic stem cells in human bone marrow of patients with aplastic anemia or myelodysplastic syndrome stably give rise to limited cell lineages

    Get PDF
    Mutation of the phosphatidylinositol N-acetylglucosaminyltransferase subunit A (PIG-A) gene in hematopoietic stem cells (HSCs) results in the loss of glycosylphosphatidylinositol- anchored proteins (GPI-APs) on HSCs, but minimally affects their development, and thus can be used as a clonal maker of HSCs. We analyzed GPI-APs expression on six major lineage cells in a total of 574 patients with bone marrow (BM) failure in which microenvironment itself is thought to be unaffected, including aplastic anemia (AA) or myelodysplastic syndrome (MDS). GPI-APs-deficient (GPIAPs-) cells were detected in 250 patients. Whereas the GPIAPs- cells were seen in all six lineages in a majority of patients who had higher proportion ([dbmtequ]3%) of GPIAPs- cells, they were detected in only limited lineages in 92.9% of cases in the lower proportion (<3%) group. In all 250 cases, the same lineages of GPI-APs- cells were detected even after 6-18-month intervals, indicating that the GPIAPs- cells reflect hematopoiesis maintained by a self-renewing HSC in most of cases. The frequency of clones with limited lineages seen in mild cases of AA was similar to that in severe cases, and clones with limited lineages were seen even in two health volunteer cases. These results strongly suggest most individual HSCs produce only restricted lineages even in a steady state. While this restriction could reflect heterogeneity in the developmental potential of HSCs, we propose an alternative model in which the BM microenvironment is mosaic in supporting commitment of progenitors toward distinct lineages. Our computer simulation based on this model successfully recapitulated the observed clinical data. © AlphaMed Press

    Topological Analysis of MAPK Cascade for Kinetic ErbB Signaling

    Get PDF
    Ligand-induced homo- and hetero-dimer formation of ErbB receptors results in different biological outcomes irrespective of recruitment and activation of similar effector proteins. Earlier experimental research indicated that cells expressing both EGFR (epidermal growth factor receptor) and the ErbB4 receptor (E1/4 cells) induced E1/4 cell-specific B-Raf activation and higher extracellular signal-regulated kinase (ERK) activation, followed by cellular transformation, than cells solely expressing EGFR (E1 cells) in Chinese hamster ovary (CHO) cells. Since our experimental data revealed the presence of positive feedback by ERK on upstream pathways, it was estimated that the cross-talk/feedback pathway structure of the Raf-MEK-ERK cascade might affect ERK activation dynamics in our cell system. To uncover the regulatory mechanism concerning the ERK dynamics, we used topological models and performed parameter estimation for all candidate structures that possessed ERK-mediated positive feedback regulation of Raf. The structure that reliably reproduced a series of experimental data regarding signal amplitude and duration of the signaling molecules was selected as a solution. We found that the pathway structure is characterized by ERK-mediated positive feedback regulation of B-Raf and B-Raf-mediated negative regulation of Raf-1. Steady-state analysis of the estimated structure indicated that the amplitude of Ras activity might critically affect ERK activity through ERK-B-Raf positive feedback coordination with sustained B-Raf activation in E1/4 cells. However, Rap1 that positively regulates B-Raf activity might be less effective concerning ERK and B-Raf activity. Furthermore, we investigated how such Ras activity in E1/4 cells can be regulated by EGFR/ErbB4 heterodimer-mediated signaling. From a sensitivity analysis of the detailed upstream model for Ras activation, we concluded that Ras activation dynamics is dominated by heterodimer-mediated signaling coordination with a large initial speed of dimerization when the concentration of the ErbB4 receptor is considerably high. Such characteristics of the signaling cause the preferential binding of the Grb2-SOS complex to heterodimer-mediated signaling molecules

    A Stability Analysis Method for Biochemical Reaction System with Inhibitory Feedback Loop

    No full text
    corecore